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Vortex solitons with the topological chargeS=3, and “quasivortex”(multipole) solitons, which exist instead
of the vortices withS=2 and 4, are constructed on a square lattice in the discrete nonlinear Schrödinger
equation(true vortices withS=2 were known before, but they are unstable). For each type of solitary wave, its
stability interval is found, in terms of the intersite coupling constant. The interval shrinks with increase ofS.
At couplings above a critical value, oscillatory instabilities set in, resulting in breakup of the vortex or
quasivortex into lattice solitons with a lower vorticity. Such localized states may be observed in optical guiding
structures, and in Bose-Einstein condensates loaded into optical lattices.
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I. INTRODUCTION

In the last two decades, intrinsic localized modes in non-
linear dynamical lattices(known asdiscrete breathers) have
become a topic of intense theoretical and experimental inves-
tigation, due to their inherent ability to concentrate and(po-
tentially) transport energy in a coherent fashion; for recent
reviews of the topic, see Refs.[1]. Settings in which these
entities, strongly localized on the lattice and periodic in time,
are important collective excitations range from arrays of
nonlinear-optical waveguides[2] to Bose-Einstein conden-
sates(BECs) in periodic potentials[3], and from various
models based on nonlinear springs[4] to Josephson-junction
ladders[5] and dynamical models of the DNA double strand
[6].

One of the most ubiquitous(and, simultaneously, most
convenient for analysis) models in which such modes have
been extensively studied is the discrete nonlinear
Schrödinger(DNLS) equation[7]. Its most straightforward
physical realization was found in one-dimensional(1D) ar-
rays of coupled optical waveguides[8,9]. Such arrays may
be multicore structures made in a slab of a semiconductor
materialsAlGaAsd [9] or silica [10], or virtual ones, induced
by a set of laser beams illuminating a photorefractive crystal
[11]. In this experimental implementation of the DNLS sys-
tem, the number of lattice sites(guiding cores) is .40, and
the available propagation distance is up to 20 diffraction
lengths of the localized mode, which lends enough room to
create discrete solitons and conduct various experiments with
them, including collisions[12]. Very recently, discrete dif-
fraction of light was demonstrated experimentally in a
bundle of optical waveguides with a regular 2D square-
lattice transverse structure, of size up to 737, made in fused
silica [13]. Actually, lattices of a much larger size, such as
1123112, can be readily created in a photorefractive crystal,
with amplitude modulation of a partially coherent beam.

An array of BEC droplets trapped in a strong optical lat-
tice (OL), with ,103 atoms in each droplet, is another direct

physical realization of the DNLS equation[3]. In this case, it
can be systematically derived via a Wannier-function decom-
position [14].

Recently, the idea of light-induced photonic lattices has
emerged in nonlinear optics[15] (it is the basis for the
above-mentioned virtual lattices used in the experiments
with photorefractive media[11]). It arises from the possibil-
ity of modifying the refractive index of a nonlinear medium
by means of a periodic pattern of intensity modulation, cre-
ated by a grid of strong beams, while a weaker beam(which,
however, experiences much stronger nonlinearity) is used to
probe the resulting structures. Promising experimental stud-
ies of discrete solitons in 1D and 2D lattices were stimulated
by this idea[11,16–19].

Theoretical studies have predicted various types of stable
discrete solitons that may occur in 1D dynamical lattices,
such as twisted solitons and multipulse bound states[20],
compactons [21], and gap solitons[22]. The above-
mentioned recent advancements in experiments strongly sug-
gest extending the analysis of DNLS solitons to the 2D case.
Strictly speaking, photonic lattices in photorefractive materi-
als have different, i.e., saturable, nonlinearity; however, the
same robust structures persist(see below). Furthermore the
bundled waveguide arrays, reported in Ref.[13], as well as
BECs loaded into a 2D optical lattice, can be described by
the 2D DNLS model. In particular, of special interest are
discrete 2D solitons carrying a topological charge, i.e.,dis-
crete vortices. In the context of the DNLS equation, the fun-
damental vortices, with topological charge(“spin”) S=1,
were systematically investigated in Ref.[23], as 2D counter-
parts of the 1D discrete twisted solitons of[20], the most
important issue being their stability. Bound states of 2D
DNLS solitons, including both vortex and zero-vorticity
ones, were investigated in Ref.[24]. In the context of other
2D lattice models, vorticity-carrying configurations were ear-
lier considered in[25]. Very recently, discrete vortices were
observed(and their robustness was demonstrated) in two in-
dependent direct experiments in a photonic lattice created in
a photorefractive material[26,27].
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Similar vortex states were found in acontinuummodel
based on the 2D Gross-Pitaevskii equation including a
square-lattice periodic potential, which describes a BEC with
attractive interparticle interactions(negative scattering
length) loaded in the corresponding square OL[28]. Analo-
gous solutions were found in the context of a 2D phenom-
enological model of photonic crystals[29] as well. In fact,
stable vortex solitons can be found in these models also with
hexagonal, triangular, or quasiperiodic(rather than square)
OLs, and even in the case when the intrinsic interaction is
repulsive[30] (in the latter case, the localized structure is of
the gap-soliton type).

While it was possible to demonstrate that the fundamental
sS=1d vortex solitons are stable in all the above-mentioned
settings, a challenging issue concerns the stability of higher-
order vortices, withSù2. In the case of the DNLS, a family
of S=2 vortices was constructed in Ref.[23]; however, they
were found to be unstable. The same inference was reported
in Ref. [28] for a model based on the Gross-Pitaevskii equa-
tion with the square OL. To the best of our knowledge, no
example of stable vortices withSù2 has been reported thus
far, either in simulations or in experiment.

On the other hand, similar issues were recently investi-
gated inuniform continuum models(ones without an exter-
nal potential) and cubic-quintic orxs2d :x−

s3d (quadratic–self-
defocusing-cubic) nonlinearities. Originally, it was found
that only vortex solitons withS=1 andS=2 were stable in
the cubic-quintic model, while the ones withSù3 were sup-
posed to be unstable[31]. However, it was then demon-
strated that the higher-order vortices may be stable too(at
least, up toS=5), but in very narrow regions[32]. For in-
stance, forS=3 solitons the stability domain occupies.3%
of the existence region(and still less forS.3), while for the
fundamentalsS=1d vortices it was.10%. Very recently,
similar results were also obtained for the vortex solitons in
the xs2d :x−

s3d model [33]; hence narrow stability domains of
higher-order vortex solitons are a generic feature of con-
tinuum spatially uniform models with competing nonlinear
interactions.

It is relevant to mention that the stable higher-order vortex
soliton beams in bulk media may be promising, in applica-
tions to photonics, as “light conduits” to guide weak optical
signals, since they are “more hollow” than the beams with
S=1. On the other hand, if, for instance, the vortex beam
with S=2 is unstable against splitting into two fundamental
vortices with S=1, which is quite a typical case[31], this
may be used to create a Y-shaped ramification of the conduit.

In this work, we address the stability of higher-order vor-
tex solitons in the 2D DNLS model. In particular, this is
motivated by the above-mentioned recent experimental dem-
onstration of stable fundamental quasidiscrete vortex solitons
[26], and the availability of phase masks which can lend
vorticity Sù2 to a laser beam. Experimental search for such
higher-order vortex spatial solitons in a photorefractive lat-
tice is currently under way[34]. Here, we demonstrate, by
means of accurate numerical calculation of eigenvalues of
the linearization around such solitons, that they arestablein
properly chosen parameter regions of the DNLS model.

The paper is organized as follows. The model is formu-
lated in Sec. II, which also briefly describes numerical tech-

niques employed for the analysis of solutions and their sta-
bility. Detailed results for the vortices withS=3, whose
topological charge(vorticity) can be identified unambigu-
ously through their phase, as the solutions are complex, are
presented in Sec. III. The analysis is based on the computa-
tion of the full set of corresponding stability eigenvalues.
The evolution of unstable solitons is investigated by dint of
direct simulations(they split into a set of two stable solitons,
with S=1 andS=0). In Sec. IV we consider solutions that
are supposed to play the role of vortices withS=2; their
counterparts corresponding toS=4 are briefly considered
too. Unlike true complex vortex solutions withS=2, which
are known to always be unstable[23], these solutions are
purely real ones, having the form of quadrupoles(in the case
corresponding toS=2). Their vorticity can be directly iden-
tified only if a small perturbation, which makes them com-
plex, is added. To this end, we employ the localized eigen-
modes of small perturbations around the solutions, and
conclude that their vorticity, defined in this fashion, is not 2,
but zero. Nevertheless, these localized solutions are qualita-
tively different from the ordinaryS=0 solitons; we call them
quasivortices. The stability region is found for the quasivor-
tices corresponding to bothS=2 andS=4. In an optical ex-
periment, the quasivortices can be created, passing the laser
beam through a phase mask, in the same way as for regular
vortices.

II. THE MODEL

The DNLS equation on a square lattice has the well-
known form [7],

i
d

dt
fm,n + CD2fm,n + ufm,nu2fm,n = 0, s1d

whereC is the coupling constant, andD2 stands for the dis-
crete Laplacian, D2fm,n=fm+1,n+fm,n+1+fm,n−1+fm−1,n
−4fm,n. Looking for stationary solutions of the formfm,n
=expsiLtdum,n, Eq. (1) leads to the time-independent equa-
tion

Lum,n = CD2um,n + uum,nu2um,n. s2d

Numerical solutions to Eq.(2) were obtained by means of a
Newton method(note that we are interested, generally speak-
ing, in complex solutions, thereforeum,n was decomposed
into its real and imaginary parts).

Upon generating stationary solutions, their stability was
examined through linearization. To this aim, a perturbed ex-
pression of the form[35]

fm,n = expsiLtdum,n + e expsiLtdfam,n exps− ivtd

+ bm,n expsiv * tdg s3d

was substituted into Eq.(1). Here um,n is the unperturbed
stationary solution,e is an infinitesimal amplitude of the per-
turbation, andv is its eigenfrequency(which is imaginary or
complex in the case of instability). This leads to the follow-
ing linear equation for the perturbation eigenmode:
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vSak

bk
! D = JSak

bk
! D , s4d

whereJ is the Jacobian matrix

J = S ]Fk/]uj ]Fk/]uj
*

− ]Fk
* /]uj − ]Fk

* /]uj
* D

and Fi ;−Csui+1+ui−1+ui+N+ui−N−4uid+Lui −ui
2ui

* ; the
string index k=m+sn−1dN maps theN3N lattice into a
vector of lengthN2 (indicesi and j also take values from the
same vector). Numerical solutions were sought for with Di-

richlet boundary conditions at the domain boundaries, i.e., at
n=1, n=N andm=1, m=N.

We use the obvious scaling invariance of the equation,
fixing the frequencyL=4 and varying the coupling param-
eter C, to examine continuous branches of the solutions. In
this way, we can cover the whole manifold of discrete-soliton
solutions, if their integer vorticityS is varied too. It is rel-
evant to mention that, for the chosen value ofL=4, theS
=0 discrete solitons andS=1 fundamental vortices in the
DNLS equation are stable in the regions, respectively[23],

C ø Ccr
s0d = 4.0, C ø Ccr

s1d = 1.6. s5d

FIG. 1. (Color online) The top left panel shows the norm of the vortex-soliton solution withS=3 vs the lattice-coupling strengthC. The
eigenvalues with the largest real part are shown as a function ofC in the top middle panel(instability takes place atC.0.862). The top right
panel shows a schematic of the two-dimensional structure of theS=3 vortex. The approximate complex values of the fieldum,n are given for
the main sites. Examples of the real and imaginary parts of the profile of the stationary solution and of its spectral plane of stability
eigenvalues around it are shown in the left, middle, and right panels(respectively): in the middle row forC=0.02 (a stable vortex), and in
the bottom row forC=1.418(a strongly unstable one). Note that in the latter case there are eigenvalue quartets accounting for the instability.
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To generate vortex solutions with given integerS, we ini-
tialize the Newton method with a quasicontinuum complex
ansatz

um,n
sinitd = Afsm− m0d + isn − n0dgS

3 sechshÎsm− m0d2 + sn − n0d2d, s6d

wheresn0,m0d is the location of the vortex center, andh is
its intrinsic scale parameter. To generate numerically exact
stationary solutions, the Newton algorithm was iterated until
the convergence no worse than 1 part in 108 was achieved.
After that, a linear stability analysis of the stationary solu-
tions was performed. The results are typically shown for
15315 site lattices, but it was verified that they do not
change for larger sizes.

III. VORTICES WITH S=3

Motivated by the presence of stable higher-order vortex
solitons in the uniform continuum models[32,33], we started
by seeking forS=3 solutions in the 2D DNLS equation.
Basic results for these vortices are summarized in Fig. 1. The
top left panel of the figure displays the norm of the solution,
P=om,nuum,nu2 (which has the meaning of the total power of
the trapped light beam in the optical waveguide array, or the
number of atoms in the trapped BEC) as a function ofC, for
fixed L=4. Note that, in the quasicontinuum approximation,
which corresponds toC@L, the dependencePsCd must be

linear for a 2D soliton of any type; it is interesting that the
linear dependence persists for smaller coupling values.

The instability growth rate of the vortex soliton, i.e., the
real part of the most unstable perturbation eigenvaluesl
; iv, is shown, as a function ofC, in the top middle panel of
Fig. 1. The top right panel shows the configuration schemati-
cally illustrating the main sites constituting the vortex and
(for C=0.02) the approximate field values at each one of
them. TheS=3 structure can be clearly discerned from the
phase variation which follows ane3iu pattern along the lat-
tice. TheS=3 vortices are stable in the region:

C ø Ccr
s3d = 0.398, s7d

where Rel;0 [cf. the stability intervals(5) for S=0 andS
=1 solitons]. At the point C=Ccr

s2d, an instability sets in
through aHamiltonian Hopf bifurcation[36], i.e., collision
of two real eigenvalue pairs with oppositeKrein signatures
(as was discussed in a general form in Refs.[37,38]). This
bifurcation makes the quartet of eigenvalues complex. With
subsequent increase ofC, we obtain additional destabilizing
bifurcations atC=0.402,C=0.508,C=0.524,C=0.886, and
C=0.952, which increase the number of unstable eigenfre-
quencies. This eventually results in six quartets of unstable
eigenvalues forC=1.418, as shown in the bottom panel of
Fig. 1. Examples of the stationary vortex and spectral plane
of its stability eigenvalues(showing their real and imaginary
parts lr and li), are displayed for a stable case, withC

FIG. 2. (Color online) Panels(a) and(b) show the initial unstableS=3 vortex forC=0.618. The top right panel shows the development
of the oscillatory instability in the evolution of the lattice field. The bottom panels show the real and imaginary parts of the eventually
established field configuration, which contains stable solitons withS=0 andS=1.
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=0.02, in the middle panel, and at the instability onset
(C=0.862) in the bottom panel of Fig. 1.

Nonlinear development of the instability of theS=3 vor-
tex in the regionC.0.398 was examined in a number of
cases by means of direct simulations of Eq.(1), using the
fourth-order Runge-Kutta method; the instability was initi-
ated by adding a small initial perturbation to the solution. A
typical example is shown in Fig. 2 for the case ofC=0.618.
In this case, the originalS=3 vortex splits into one withS
=1, which stays at the initial position, and an additional frag-
ment withS=0, which separates and eventually gets trapped
at a different lattice site. Both theS=1 andS=0 solitons,
generated by the instability from theS=3 vortex, are stable
at the corresponding values of the parameters. We stress that
the apparent nonconservation of the topological charge ob-

served in these simulations is quite possible, as the lattice
does not conserve angular momentum.

IV. QUASIVORTICES

The stationary equation(2) admits real solutions. These
are generated by the real part of the ansatz(6) with S=2 and
S=4. First, we focus on the presentation of their shape and
dynamical properties; then, we will discuss interpretation of
such real solutions in terms of vorticity.

For S=2, typical results are shown in Figs. 3 and 4. Simi-
lar to Fig. 1, the top left and right panels in Fig. 3 show,
respectively, the norm of the solution and the instability
growth rate as a function ofC. As in the case of theS=3
vortex, the instability sets in through the Hamiltonian Hopf

FIG. 3. (Color online) The top left panel shows the norm of the quasivortex solution, corresponding toS=2, vs the coupling constantC.
The largest real part of the stability eigenvalues is shown as a function ofC in the top right panel(instability sets in atC=0.862). The(purely
real) profile of the stationary solution, and the spectral plane of the associated stability eigenvalues are shown in the left and right panels: in
the middle row forC=0.02, and in the bottom one forC=0.862.
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bifurcation resulting from the collision of two imaginary
eigenvalue pairs with opposite Krein signatures, which gives
rise to a quartet of complex eigenvalues. The stability region
is

C ø Ccr
s2d = 0.862 s8d

[cf. the stability intervals(5) for S=0 andS=1 solitons, and
the one(7) for S=3]. The profile of the solution generated by
the real part initial ansatz(6), and the spectral plane of the
stability eigenvalues associated with it, are displayed in a
stable case, forC=0.02, in the middle panel, and at the in-
stability onset, atC=0.862, in the bottom panel of Fig. 3. It
is clear that the resulting solution follows a pattern of
coss2ud (for S=2) along the lattice.

Development of the instability of these solitons for
C.0.862 was studied by direct simulations of Eq.(1). A
typical example is shown in Fig. 4 forC=1: the oscillatory
instability transforms the initial state into an ordinary zero-
vorticity lattice soliton, which is a stable solution in this
case.

The interpretation of solutions of this type in terms of the
vorticity is ambiguous, as the solution is a purely real one.
As is obvious from Fig. 3, the solution is actually a quadru-
pole localized on four lattice sites, with zeros between them,
which is typical for vortex solutions that must vanish at the
central point. The phase of the solution jumps byp when
comparing positive and negative real values of the solution at
adjacent sites carrying the solutions. To understand the glo-
bal vorticity that may be ascribed to the solution, one can

add a small perturbation which makes the solution complex
and thus makes it possible to define a phase field across the
lattice (this, obviously, corresponds to a situation expected in
the experiment, where perturbations are inevitable). To this
end, we tried perturbations based on all the localized eigen-
modes of small perturbations around the stable stationary
states of the present type. In Fig. 5, a full set of contour plots
of eigenmodes is displayed for the same case(with C=0.02)
which was used as an example in Fig. 3. The most essential
peculiarity of the eigenmodes is that they are completely
localized on the same set of four sites which carry the un-
perturbed solution.

Straightforward consideration demonstrates that a combi-
nation of the stationary solution and first eigenmode(the one
with the eigenvaluel1; iv1<0.08i), taken with a small am-
plitude, may give rise to the following phase distribution
along a closed route connecting the four sites:

0 → p → 0 → p → 0, s9d

or the same multiplied bys−1d. In fact, the perturbed con-
figuration oscillates, at the frequencyv1, between these two
phase patterns. Next, the second and third eigenmodes,
which belong to the eigenvalue,l2,3; iv2,3<0.04i, if added,
with a small amplitude, to the unperturbed state, may give
rise to phase patterns of the types

0 → p → 0 → − p → 0, or 0→ p → 2p → p → 0

s10d

(we take into account a possibility of a combination of the
two latter eigenmodes). None of these patterns is character-

FIG. 4. (Color online) The top left panel shows the unstable quasivortex corresponding toS=2, in the case ofC=1. The top right panel
shows the oscillatory instability, setting in aroundt=15 in the evolution of the lattice field. The bottom panels show the real and imaginary
parts of the established stable configuration(at t=200), which is identified as an ordinary stable zero-vorticity soliton.
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ized by a nonzero net phase gain generated by the round trip
along the closed route, so the pattern cannot be ascribed
finite vorticity. However, this is clearly a type of stable lo-
calized 2D lattice solutions drastically different from the or-
dinary zero-vorticity solitons. While this solution has no vor-
ticity, it may be characterized by the largest intrinsic phase
differencesuDfudmax. This quantity is different from zero, but
it depends on the way a small perturbation is added:
suDfudmax=p in the case of Eq.(9), andsuDfudmax=2p in the

case of Eq.(10). We call this type ofreal solutiona quasivor-
tex.

We stress thatcomplex localized solutions to the 2D
DNLS equation, which are true vortices withS=2, were
found in Ref. [23]. They were constructed starting with a
complex ansatz, whose real and imaginary parts, unlike those
in the expression(6), emulated the continuum model’s ex-
pressions coss2ud and sins2ud, whereu is the angular vari-
able in the plane. However, it was found in Ref.[23] (and

FIG. 5. (Color online) The panels display, in the form of contour plots, the real(left panels) and imaginary(right panels) parts of the full
set of three localized eigenmodes of small perturbations around the stable quasivortex corresponding to theS=2 solution, in the case of
C=0.02(the same case as presented in Fig. 3). The first eigenmode(top panels) corresponds to the frequencyv1<0.08, and the two other
eigenmodes(middle and bottom panels) belong to the frequencyv2,3<0.04.
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rechecked in the course of the present work) that those true
vortices are unstable through a real eigenvalue pair.

We have also constructed real quasivortices correspond-
ing to S=4 [i.e., generated by the real part of the initial
ansatz(6) with S=4]. These results will be reported in detail
elsewhere. However, it is worth mentioning that their stabil-
ity interval is [cf. Eqs.(8) and (7)] CøCcr

s4d=0.292. As ex-
pected from the comparison with known results for con-
tinuum models(with competing nonlinearities) [32,33], the
stability interval shrinks(but does not disappear) with the
increase ofS, which equally pertains to the true vortices and
quasivortices.

V. CONCLUSIONS

In this work, we have constructed solutions which are
candidates for the role of stable higher-order localized vorti-
ces in the nonlinear dynamical lattice. The solutions gener-
ated by the initial ansatz with vorticityS=3 are true complex
vortices, while the ones corresponding toS=2 andS=4 are
purely real quasivortices, which actually present a different
type of lattice solitons. For solutions of each type, the analy-
sis of perturbation eigenmodes produces a stability interval,
which shrinks with the increase ofS (while true complex
vortices with S=2, which were found in the earlier work
[23], are unstable). The evolution of unstable states was in-
vestigated by means of direct simulations, with a conclusion

that the unstableS=3 vortices split into a set of two sepa-
rated stable solitons withS=1 andS=0, while the quasivor-
tex corresponding toS=2 transforms itself into an ordinary
zero-vorticity soliton.

These results are not only relevant to the general theory of
dynamical lattices. They apply directly to bundled arrays of
nonlinear optical waveguides and, indirectly(as the underly-
ing nonlinearity is different), to waveguiding structures in
the form of virtual lattices in photorefractive media. In these
settings, the results suggest the possibility of existence of
additional types of spatial optical solitons. In particular, the
recent experimental demonstration of stable fundamental dis-
crete vortices in 2D photonic lattices with self-focusing non-
linearity in Ref. [26] suggests that the higher-order vortices
may be observed in the same medium. Experiments are cur-
rently under way with vortex masks corresponding toS=3
and S=4 [34]. Another direct application of the theoretical
results reported in this paper is prediction of vortex and qua-
sivortex solitons in BECs loaded in optical lattices, under
realistic experimental conditions.
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