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Stable higher-order vortices and quasivortices in the discrete nonlinear Schrodinger equation
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Vortex solitons with the topological char@s 3, and “quasivortex{multipole) solitons, which exist instead
of the vortices withS=2 and 4, are constructed on a square lattice in the discrete nonlinear Schrodinger
equation(true vortices withS=2 were known before, but they are unstabkor each type of solitary wave, its
stability interval is found, in terms of the intersite coupling constant. The interval shrinks with incre&se of
At couplings above a critical value, oscillatory instabilities set in, resulting in breakup of the vortex or
guasivortex into lattice solitons with a lower vorticity. Such localized states may be observed in optical guiding
structures, and in Bose-Einstein condensates loaded into optical lattices.
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[. INTRODUCTION physical realization of the DNLS equati§8]. In this case, it
can be systematically derived via a Wannier-function decom-
In the last two decades, intrinsic localized modes in nonposition[14].
linear dynamical latticegknown asdiscrete breathepshave Recently, the idea of light-induced photonic lattices has
become a topic of intense theoretical and experimental invegmerged in nonlinear opticgl9] (it is the basis for the
tigation, due to their inherent ability to concentrate gpd- ~ above-mentioned virtual lattices used in the experiments
tentially) transport energy in a coherent fashion; for recentith photorefractive medigl1)). It arises from the possibil-
reviews of the topic, see Reffl]. Settings in which these ity of modifying the refractive index of a nonlinear medium

entities, strongly localized on the lattice and periodic in time,?Y Means of a periodic pattern of intensity modulation, cre-

are important collective excitations range from arrays of2ted by agrid of strong beams, while a weaker beatich,

nonlinear-optical waveguideg] to Bose-Einstein conden- however, experiences much stronger nonlinepiitsed to

sates(BECS in periodic potentials[3], and from various probe the resulting structures. Promising experimental stud-

dels based i . 0 J h X . ies of discrete solitons in 1D and 2D lattices were stimulated
models based on nonlinear sprirg$ to Josephson-junction by this idea[11,16—19.

ladders[5] and dynamical models of the DNA double strand ™~ 1,5 retical studies have predicted various types of stable
[6]. o , discrete solitons that may occur in 1D dynamical lattices,
One of the most ubiquitougand, simultaneously, most ¢ ,ch as twisted solitons and multipulse bound st{Res,
convenient for analysjsmodels in which such modes have compactons [21], and gap solitons[22]. The above-
been extensively studied is the discrete nonlineaimentioned recent advancements in experiments strongly sug-
Schrédinger(DNLS) equation[7]. Its most straightforward  gest extending the analysis of DNLS solitons to the 2D case.
physical realization was found in one-dimensio(HD) ar-  Strictly speaking, photonic lattices in photorefractive materi-
rays of coupled optical waveguid¢8,9]. Such arrays may als have different, i.e., saturable, nonlinearity; however, the
be multicore structures made in a slab of a semiconductasame robust structures persisee below. Furthermore the
material(AlGaAs) [9] or silica[10], or virtual ones, induced bundled waveguide arrays, reported in Réf3], as well as
by a set of laser beams illuminating a photorefractive crystaBECs loaded into a 2D optical lattice, can be described by
[11]. In this experimental implementation of the DNLS sys-the 2D DNLS model. In particular, of special interest are
tem, the number of lattice sitéguiding coregis =40, and discrete 2D solitons carrying a topological charge, idés;
the available propagation distance is up to 20 diffractioncrete vorticesIn the context of the DNLS equation, the fun-
lengths of the localized mode, which lends enough room talamental vortices, with topological chargéspin®) S=1,
create discrete solitons and conduct various experiments witlvere systematically investigated in Rg23], as 2D counter-
them, including collisiond12]. Very recently, discrete dif- parts of the 1D discrete twisted solitons [@0], the most
fraction of light was demonstrated experimentally in aimportant issue being their stability. Bound states of 2D
bundle of optical waveguides with a regular 2D square-DNLS solitons, including both vortex and zero-vorticity
lattice transverse structure, of size up t& 7, made in fused ones, were investigated in R¢R24]. In the context of other
silica [13]. Actually, lattices of a much larger size, such as2D lattice models, vorticity-carrying configurations were ear-
112X 112, can be readily created in a photorefractive crystallier considered if25]. Very recently, discrete vortices were
with amplitude modulation of a partially coherent beam.  observedand their robustness was demonstraiadwo in-

An array of BEC droplets trapped in a strong optical lat-dependent direct experiments in a photonic lattice created in
tice (OL), with ~10° atoms in each droplet, is another direct a photorefractive materidP6,27.
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Similar vortex states were found in @ntinuummodel  niques employed for the analysis of solutions and their sta-
based on the 2D Gross-Pitaevskii equation including ility. Detailed results for the vortices witls=3, whose
square-lattice periodic potential, which describes a BEC withtopological chargegvorticity) can be identified unambigu-
attractive interparticle interactiongnegative scattering ously through their phase, as the solutions are complex, are
length loaded in the corresponding square (A8]. Analo-  presented in Sec. lll. The analysis is based on the computa-
gous solutions were found in the context of a 2D phenomtion of the full set of corresponding stability eigenvalues.
enological model of photonic crystal29] as well. In fact, The evolution of unstable solitons is investigated by dint of
stable vortex solitons can be found in these models also WitQjrect simulationgthey split into a set of two stable solitons,
hexagonal, triangular, or quasiperiodi@ther than squaye it s=1 andS=0). Iin Sec. IV we consider solutions that

OLs, and even in the case when the intrinsic interaction isare supposed to play the role of vortices Wi 2; their
repulsive[30] (in the latter case, the localized structure is Ofcounterparts corresponding ®=4 are briefly con,sidered

the gap-soliton type . ; : .
While it was possible to demonstrate that the fundamentatloo' Unlike true complex vortex solutions W'&Z’.Wh'Ch
re known to always be unstabJg3], these solutions are

(S=1) vortex solitons are stable in all the above-mentione rpurely real ones, having the form of quadrupdliesthe case
settings, a challenging issue concerns the stabili i - ) ’ ) . . ;
ng ging 1ssu ability of highe corresponding t&@=2). Their vorticity can be directly iden-

order vortices, witt5= 2. In the case of the DNLS, a family - . ; ;
of S=2 vortices was constructed in Rg23]; however, they tified only if a small perturbation, which makes them com-

were found to be unstable. The same inference was reportdd€X; is added. To this end, we employ the localized eigen-
in Ref. [28] for a model based on the Gross-Pitaevskii equamodes of small perturbations around the solutions, and
tion with the square OL. To the best of our knowledge, noconclude that their vorticity, defined in this fashion, is not 2,

example of stable vortices witB= 2 has been reported thus but zero. Nevertheless, these localized solutions are qualita-
far, either in simulations or in experiment. tively different from the ordinarys=0 solitons; we call them

On the other hand, similar issues were recently investiquasivorticesThe stability region is found for the quasivor-
gated inuniform continuum modelgones without an exter- tices corresponding to botB=2 andS=4. In an optical ex-
nal potentia) and cubic-quintic ory'?: X(_S) (quadratic—self-  periment, the quasivortices can be created, passing the laser
defocusing-cubig nonlinearities. Originally, it was found beam through a phase mask, in the same way as for regular
that only vortex solitons witt8=1 andS=2 were stable in vortices.
the cubic-quintic model, while the ones wifiz 3 were sup-

posed to be unstablg31]. However, it was then demon- Il. THE MODEL
strated that the higher-order vortices may be stable(&bo
least, up toS=5), but in very narrow region$32]. For in- The DNLS equation on a square lattice has the well-

stance, forS=3 solitons the stability domain occupies3% known form[7],
of the existence regiofand still less forS> 3), while for the
fundamental(S=1) vortices it was=10%. Very recently,
similar results were also obtained for the vortex solitons in
the ¥ x® model[33]; hence narrow stability domains of
higher-order vortex solitons are a generic feature of conWhereC is the coupling constant, anti, stands for the dis-
tinuum spatially uniform models with competing nonlinear crete  Laplacian, Ax¢mn=dmiint Pmns1t dmn-1+ Pm-1n
interactions. —4¢mn. LooKing for stationary solutions of the form,,
It is relevant to mention that the stable higher-order vortex=€XPiAt Uy, Eq. (1) leads to the time-independent equa-
soliton beams in bulk media may be promising, in applica-tion
tions to photonics, as “light conduits” to guide weak optical
signals, since they are “more hollow” than the beams with AU = CAgUmp + [Unynf U . 2
S=1. On the other hand, if, for instance, the vortex beam . _ .
with S=2 is unstable against splitting into two fundamental Numerical solutions to Eq2) were obtained by means of a
vortices with S=1, which is quite a typical casgs1], this !\Iewt.on methodnote that we are interested, generally speak-
may be used to create a Y-shaped ramification of the conduif?d, in complex solutions, thereforg,,, was decomposed
In this work, we address the stability of higher-order vor-NtO its real and imaginary pajts _ N
tex solitons in the 2D DNLS model. In particular, this is UPON generating stationary solutions, their stability was
motivated by the above-mentioned recent experimental denfX@mined through linearization. To this aim, a perturbed ex-
onstration of stable fundamental quasidiscrete vortex solitonBression of the forni3s]
[26], and the availability of phase masks which can lend ) ) )
vorticity S=2 to a laser }t;eamr.) Experimental search for such Pmn = EXHIAYUn + € XA A A, EXP(—Twl)
higher-order vortex spatial solitons in a photorefractive lat- + by explio* 1)] (3)
tice is currently under way34]. Here, we demonstrate, by
means of accurate numerical calculation of eigenvalues ofvas substituted into Eql). Here up,, is the unperturbed
the linearization around such solitons, that they stedblein stationary solutione is an infinitesimal amplitude of the per-
properly chosen parameter regions of the DNLS model.  turbation, andw is its eigenfrequencgwhich is imaginary or
The paper is organized as follows. The model is formu-complex in the case of instabilityThis leads to the follow-
lated in Sec. II, which also briefly describes numerical tech4ing linear equation for the perturbation eigenmode:

.d
|d_td’m,n + CA2¢m,n + |¢m,n|2¢m,n =0, (1)
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FIG. 1. (Color onling The top left panel shows the norm of the vortex-soliton solution B8 vs the lattice-coupling strengt® The
eigenvalues with the largest real part are shown as a functi@imthe top middle panginstability takes place & > 0.862. The top right
panel shows a schematic of the two-dimensional structure dd#8vortex. The approximate complex values of the figlg, are given for
the main sites. Examples of the real and imaginary parts of the profile of the stationary solution and of its spectral plane of stability
eigenvalues around it are shown in the left, middle, and right paredpectively. in the middle row forC=0.02(a stable vortex and in
the bottom row foIC=1.418(a strongly unstable oneNote that in the latter case there are eigenvalue quartets accounting for the instability.

ay ay richlet boundary conditions at the domain boundaries, i.e., at
O v =J b ) (4 n=1,n=Nandm=1, m=N.
K K We use the obvious scaling invariance of the equation,
wherelJ is the Jacobian matrix fixing the frequencyA =4 and varying the coupling param-
eter C, to examine continuous branches of the solutions. In

( Ry oFdou; ) this way, we can cover the whole manifold of discrete-soliton
S \=dFJou; - oFlau;

solutions, if their integer vorticitys is varied too. It is rel-
evant to mention that, for the chosen value/of4, theS
and F;=-C(U1+Ui_1+U,n+Ui_y—4u)+Au-u?u; the =0 discrete solitons an@=1 fundamental vortices in the
string indexk=m+(n-1)N maps theNXx N lattice into a DNLS equation are stable in the regions, respectiy28sj,
vector of lengthN? (indicesi andj also take values from the © @

same vector Numerical solutions were sought for with Di- C=Cy =4.0,C=C; =16. (5
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FIG. 2. (Color onling Panelga) and(b) show the initial unstabl&=3 vortex forC=0.618. The top right panel shows the development
of the oscillatory instability in the evolution of the lattice field. The bottom panels show the real and imaginary parts of the eventually
established field configuration, which contains stable solitons $4th andS=1.

To generate vortex solutions with given inte@we ini-  linear for a 2D soliton of any type; it is interesting that the
tialize the Newton method with a quasicontinuum complexlinear dependence persists for smaller coupling values.
ansatz The instability growth rate of the vortex soliton, i.e., the

. _ real part of the most unstable perturbation eigenvalues
ulnt = A[(m-my) +i(n-ny)]S . : i :
mn Mo 0 =iw, is shown, as a function @, in the top middle panel of
x secizm(m=mg)Z+ (n—ng)?), (6) Fig. 1. The top right panel shows the configuration schemati-

cally illustrating the main sites constituting the vortex and
where(ny, M) is the location of the vortex center, andis  (for C=0.02 the approximate field values at each one of
its intrinsic scale parameter. To generate numerically exaadhem. TheS=3 structure can be clearly discerned from the
stationary solutions, the Newton algorithm was iterated untibhase variation which follows ae®? pattern along the lat-
the convergence no worse than 1 part iff &@s achieved. tice. TheS=3 vortices are stable in the region:
After that, a linear stability analysis of the stationary solu-
tions was performed. The results are typically shown for c<Cc®=0398 7
15x 15 site lattices, but it was verified that they do not o T

change for larger sizes. where Ra =0 [cf. the stability intervalg5) for S=0 andS

=1 soliton§. At the point C:Cfﬁ), an instability sets in
through aHamiltonian Hopf bifurcation[36], i.e., collision
of two real eigenvalue pairs with oppositgein signatures
Motivated by the presence of stable higher-order vortexas was discussed in a general form in R¢85,38). This
solitons in the uniform continuum mod€l32,33, we started  bifurcation makes the quartet of eigenvalues complex. With
by seeking forS=3 solutions in the 2D DNLS equation. subsequent increase Gf we obtain additional destabilizing
Basic results for these vortices are summarized in Fig. 1. Thbifurcations atC=0.402,C=0.508,C=0.524,C=0.886, and
top left panel of the figure displays the norm of the solution,C=0.952, which increase the number of unstable eigenfre-
P=3nlunn/? (Which has the meaning of the total power of quencies. This eventually results in six quartets of unstable
the trapped light beam in the optical waveguide array, or theigenvalues folC=1.418, as shown in the bottom panel of
number of atoms in the trapped BEE&s a function ofC, for ~ Fig. 1. Examples of the stationary vortex and spectral plane
fixed A=4. Note that, in the quasicontinuum approximation,of its stability eigenvalueéshowing their real and imaginary
which corresponds t€> A, the dependencB(C) must be parts A\, and \;), are displayed for a stable case, with

Ill. VORTICES WITH S=3
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FIG. 3. (Color onling The top left panel shows the norm of the quasivortex solution, correspondBrg2pvs the coupling constagt
The largest real part of the stability eigenvalues is shown as a functiGrirothe top right panelinstability sets in aC=0.862. The(purely
real) profile of the stationary solution, and the spectral plane of the associated stability eigenvalues are shown in the left and right panels: in
the middle row forC=0.02, and in the bottom one f@=0.862.

=0.02, in the middle panel, and at the instability onsetserved in these simulations is quite possible, as the lattice

(C=0.862 in the bottom panel of Fig. 1. does not conserve angular momentum.
Nonlinear development of the instability of ti&=3 vor-
tex in the regionC>0.398 was examined in a number of IV. QUASIVORTICES

cases by means of direct simulations of E®), using the

fourth-order Runge-Kutta method; the instability was initi-  The stationary equatio(2) admits real solutions. These
ated by adding a small initial perturbation to the solution. Aare generated by the real part of the ang@favith S=2 and
typical example is shown in Fig. 2 for the case®f0.618.  S=4. First, we focus on the presentation of their shape and
In this case, the origina®=3 vortex splits into one witl5  dynamical properties; then, we will discuss interpretation of
=1, which stays at the initial position, and an additional frag-such real solutions in terms of vorticity.

ment withS=0, which separates and eventually gets trapped For S=2, typical results are shown in Figs. 3 and 4. Simi-
at a different lattice site. Both th8=1 and S=0 solitons, lar to Fig. 1, the top left and right panels in Fig. 3 show,
generated by the instability from tH&=3 vortex, are stable respectively, the norm of the solution and the instability
at the corresponding values of the parameters. We stress thgitowth rate as a function of. As in the case of th&=3
the apparent nonconservation of the topological charge obsortex, the instability sets in through the Hamiltonian Hopf
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FIG. 4. (Color onling The top left panel shows the unstable quasivortex correspondig2¢in the case o€=1. The top right panel
shows the oscillatory instability, setting in aroutwll5 in the evolution of the lattice field. The bottom panels show the real and imaginary
parts of the established stable configuratiant=200), which is identified as an ordinary stable zero-vorticity soliton.

bifurcation resulting from the collision of two imaginary add a small perturbation which makes the solution complex
eigenvalue pairs with opposite Krein signatures, which givesind thus makes it possible to define a phase field across the
rise to a quartet of complex eigenvalues. The stability regiodattice (this, obviously, corresponds to a situation expected in
is the experiment, where perturbations are inevitable this
end, we tried perturbations based on all the localized eigen-
Cscg?:o_gez (8) modes of small perturbations around the stable stationary
states of the present type. In Fig. 5, a full set of contour plots
[cf. the stability intervalg5) for S=0 andS=1 solitons, and  of eigenmodes is displayed for the same cagieh C=0.09
the one(7) for S=3]. The profile of the solution generated by Which was used as an example in Fig. 3. The most essential
the real part initial ansatgs), and the spectral plane of the Peculiarity of the eigenmodes is that they are completely
stability eigenvalues associated with it, are displayed in doc@lized on the same set of four sites which carry the un-

stable case, fo€=0.02, in the middle panel, and at the in- Perturbed solution. _ _
stability onset, aC=0.862, in the bottom panel of Fig. 3. It Straightforward consideration demonstrates that a combi-

is clear that the resulting solution follows a pattern of Nation of the stationary solution and first eigenmditie one
cog26) (for S=2) along the lattice. with the eigenvalua; =iw;~0.08), taken with a small am-
plitude, may give rise to the following phase distribution

Development of the instability of these solitons for . .
along a closed route connecting the four sites:

C>0.862 was studied by direct simulations of Ed). A

typical example is shown in Fig. 4 fa@@=1: the oscillatory O—-7—0—7—0, (9

instability transforms the initial state into an ordinary zero- o

vorticity lattice soliton, which is a stable solution in this O the same multiplied by-1). In fact, the perturbed con-

case. figuration oscillates, at the frequeney, between these two
The interpretation of solutions of this type in terms of thePhase patterns. Next, the second and third eigenmodes,

vorticity is ambiguous, as the solution is a purely real oneWhich belong to the eigenvaluks ;=iw, ;~0.04, if added,

As is obvious from Fig. 3, the solution is actually a quadru-With @ small amplitude, to the unperturbed state, may give

pole localized on four lattice sites, with zeros between themiS€ 0 phase patterns of the types

which is typical for vortex solutions that must vanish at the 0O-7m—0—-7—0,00—7— 27— 17— 0

central point. The phase of the solution jumps f#ywhen (10)

comparing positive and negative real values of the solution at

adjacent sites carrying the solutions. To understand the glqwe take into account a possibility of a combination of the

bal vorticity that may be ascribed to the solution, one carntwo latter eigenmodgsNone of these patterns is character-

056612-6



STABLE HIGHER-ORDER VORTICES AND... PHYSICAL REVIEW E 70, 056612(2004)

(a)

=02 o |
—03 -15

14 il -0.4 14 -2

-05 -25

x10°

FIG. 5. (Color onling The panels display, in the form of contour plots, the (&&ft panel3 and imaginaryright panel$ parts of the full
set of three localized eigenmodes of small perturbations around the stable quasivortex correspondii®F B sbleition, in the case of
C=0.02(the same case as presented in Fig.TBe first eigenmodé&op panels corresponds to the frequenay =~ 0.08, and the two other
eigenmodegmiddle and bottom pangldelong to the frequency, ;=~0.04.

ized by a nonzero net phase gain generated by the round trigase of Eq(10). We call this type ofeal solutiona quasivor-
along the closed route, so the pattern cannot be ascribedx.

finite vorticity. However, this is clearly a type of stable lo- We stress thattomplexlocalized solutions to the 2D
calized 2D lattice solutions drastically different from the or- DNLS equation, which are true vortices witB=2, were
dinary zero-vorticity solitons. While this solution has no vor- found in Ref.[23]. They were constructed starting with a
ticity, it may be characterized by the largest intrinsic phasecomplex ansatz, whose real and imaginary parts, unlike those
difference(|A¢|)max This quantity is different from zero, but in the expressior{6), emulated the continuum model's ex-

it depends on the way a small perturbation is addedpressions cd®6) and sirf26), where @ is the angular vari-
(|A@|)max= in the case of Eq9), and(|A¢|)max=2m inthe  able in the plane. However, it was found in RE23] (and
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rechecked in the course of the present wdHat those true that the unstabl&=3 vortices split into a set of two sepa-
vortices are unstable through a real eigenvalue pair. rated stable solitons witB=1 andS=0, while the quasivor-
We have also constructed real quasivortices correspondex corresponding t&=2 transforms itself into an ordinary
ing to S=4 [i.e., generated by the real part of the initial zero-vorticity soliton.
ansatz6) with S=4]. These results will be reported in detail ~ These results are not only relevant to the general theory of
elsewhere. However, it is worth mentioning that their stabil-dynamical lattices. They apply directly to bundled arrays of
ity interval is [cf. Egs.(8) and (7)] C=< Cg‘:):o,zgz, As ex- nhonlinear optical waveguides and, indirectas the underly-
pected from the comparison with known results for con-ing nonlinearity is different to waveguiding structures in
tinuum models(with competing nonlinearitigs[32,33, the  the form of virtual lattices in photorefractive media. In these
stability interval shrinks(but does not disappeawith the  settings, the results suggest the possibility of existence of
increase ofS, which equally pertains to the true vortices and additional types of spatial optical solitons. In particular, the
guasivortices. recent experimental demonstration of stable fundamental dis-
crete vortices in 2D photonic lattices with self-focusing non-
linearity in Ref.[26] suggests that the higher-order vortices
V. CONCLUSIONS may be observed in the same medium. Experiments are cur-
; ; - rently under way with vortex masks correspondingSte3
In this work, we have constructed solutions which areand S=4 [34]. Another direct application of the theoretical

candidates for the role of stable higher-order localized vorti-

ces in the nonlinear dynamical lattice. The solutions gener[eSUItS reported in this paper is prediction of vortex and qua-

ated by the initial ansatz with vorticitg=3 are true complex sivo.rtefx solitqns in BECs !qaded in optical lattices, under
vortices, while the ones corresponding3e2 andS=4 are realistic experimental conditions.
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